ISSN 1600-5368

Di- μ -sulfido-bis[(2-aminoethanethiolato- $\kappa^2 N$,S)oxidomolybdate(V)]

Ya-Min Li,^a* Jing-Lai Zhang^b and Xiao-Wei Zhao^a

^aInstitute of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475001, People's Republic of China, and ^bInstitute of Fine Chemistry and Engineering, Henan University, Kaifeng, Henan 475001, People's Republic of China Correspondence e-mail: liyamin2006@hotmail.com

Received 21 May 2007; accepted 30 May 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.015 Å; R factor = 0.057; wR factor = 0.115; data-to-parameter ratio = 17.9.

The title compound, $[Mo_2O_2S_2(C_2H_6NS)_2]$, was obtained by the reaction of sodium molybdate, H_2S , sodium hydrosulfite and 2-aminoethanethiol. In the crystal structure, each Mo^V atom, in a square-pyramidal geometry, is coordinated by two μ -S atoms, one terminal O atom, one S atom and one N atom of the 2-aminoethanethiolate ligand. A three-dimensional hydrogen-bonding network is constructed by intermolecular N-H···O and N-H···S hydrogen bonds.

Related literature

For related structures, see: Bunzey *et al.* (1977); Drew & Kay (1971); Dulebohn *et al.* (1991); Howlader *et al.* (1984); Li *et al.* (2005); Llusar *et al.* (2005); Müller *et al.* (1982); Spivack & Dori (1970).

Experimental

Crystal data

 $\begin{bmatrix} Mo_2O_2S_2(C_2H_6NS)_2 \end{bmatrix} \\ M_r = 440.28 \\ Monoclinic, P2_1/c \\ a = 10.2359 (9) \text{ Å} \\ b = 12.5935 (11) \text{ Å} \\ c = 10.2596 (9) \text{ Å} \\ \beta = 104.166 (2)^{\circ} \\ \end{bmatrix}$

Data collection

Siemens SMART CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T_{min} = 0.492, T_{max} = 0.633 Z = 4 Mo K α radiation μ = 2.59 mm⁻¹ T = 293 (2) K 0.30 × 0.22 × 0.18 mm

 $V = 1282.30 (19) \text{ Å}^3$

6415 measured reflections 2268 independent reflections 1753 reflections with $I > 2\sigma(I)$ $R_{int} = 0.073$ metal-organic compounds

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.115$ S = 1.182268 reflections 127 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.75\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.77\ e\ \text{\AA}^{-3} \end{split}$$

Table 1			
Selected	bond	lengths	(Å).

Mo1-O1	1.676 (7)	Mo2-O2	1.683 (7)
Mo1-N1	2.209 (7)	Mo2-N2	2.211 (8)
Mo1-S4	2.306 (3)	Mo2-S2	2.312 (3)
Mo1-S2	2.349 (3)	Mo2-S4	2.329 (3)
Mo1-S1	2.391 (3)	Mo2-S3	2.383 (3)
Mo1-Mo2	2.8197 (12)		

Table 2	_	
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1C \cdots O1^{i}$	0.90	2.25	3.025 (11)	144
$N1 - H1D \cdot \cdot \cdot S3^{ii}$	0.90	2.53	3.400 (8)	161
$N2-H2C \cdot \cdot \cdot S2^{iii}$	0.90	2.81	3.704 (9)	173
$N2-H2D\cdots S1^{iv}$	0.90	2.50	3.403 (8)	178

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x, -y + 1, -z; (iv) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Siemens, 1996); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank Henan University for financial support and Professors X.-T. Wu and T.-L. Sheng for their help.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2065).

References

Bunzey, G., Enemark, J. H., Howie, J. K. & Sawyer, D. T. (1977). J. Am. Chem. Soc. 99, 4168–4170.

- Drew, M. G. B. & Kay, A. (1971). J. Chem. Soc. A, pp. 1851-1854.
- Dulebohn, J. I., Stamatakos, T. C., Ward, D. L. & Nocera, D. G. (1991). Polyhedron, 10, 2813–2820.
- Howlader, N. C., Haight, G. P., Hambley, T. W., Snow, M. R. & Lawrance, G. A. (1984). Inorg. Chem. 23, 1811–1815.
- Li, Y., Lu, J., Cui, X.-B., Xu, J.-Q., Li, K.-C., Sun, H.-Y., Li, G.-H., Pan, L.-Y. & Yang, Q.-X. (2005). J. Solid State Chem. 178, 363–369.
- Llusar, R., Triguero, S., Vicent, C., Sokolov, M. N., Domercq, B. & Fourmigué, M. (2005). *Inorg. Chem.* 44, 8937–8946.
- Müller, A., Reinsch-Vogell, U., Krickemeyer, E. & Bögge, H. (1982). Angew. Chem. Int. Ed. Engl. 21, 796–797.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Siemens (1996). SMART, SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spivack, B. & Dori, Z. (1970). J. Chem. Soc. D, pp. 1716-1717

supplementary materials

Acta Cryst. (2007). E63, m1877 [doi:10.1107/S1600536807026384]

Di- μ -sulfido-bis[(2-aminoethanethiolato- $\kappa^2 N$,S)oxidomolybdate(V)]

Y.-M. Li, J.-L. Zhang and X.-W. Zhao

Comment

Molybdenum chalcogenides have been extensively studied due to their applications in modelling of molybdoenzymes in biological systems. During the course of exploring polynuclear molybdenum clusters, dinuclear molybdenum complexes are always considered as excellent starting materials. Many compounds containing a $[Mo_2O_2(\mu-S)_2]$ structural unit have been isolated and structurally characterized (Bunzey *et al.*, 1977; Drew & Kay, 1971; Dulebohn *et al.*, 1991; Howlader *et al.*, 1984; Li *et al.*, 2005; Llusar *et al.*, 2005; Müller *et al.*, 1982; Spivack & Dori,1970). Herein, we report the crystal structure of a new dinuclear molybdenum complex, (I).

In the structure of (I) (Fig. 1), the two Mo atoms are not crystallographically equivalent, which are linked by two μ -S atoms. Each Mo atom is chelated by one 2-aminoethanethiolate (aet) ligand in the equatorial plane. The two aet ligands are in a *trans* form. Each Mo atom is also bonded to one terminal O atom in the axial position, resulting in a five-coordinated square-pyramidal coordination geometry. In virtue of weak intermolecular N—H…O and N—H…S hydrogen bonds, a three-dimensional hydrogen-bonding network is constructed (Fig. 2).

Experimental

The compound (I) was synthesized by bubbling H_2S gas into a 20 ml aqueous solution of Na_2MoO_4 ·2 H_2O (4.84 g, 20 mmol). The solids of $Na_2S_2O_4$ (0.469 g, 2.7 mmol) and 2-aminoethanethiol (2 g, 26 mmol) were added to the red solution with stirring for about 4 h at 358 K. After cooling to room temperature, the solution was filtered and the residue was dissolved in 10 ml DMF. Orange prism crystals of (I) were obtained by slow evaporation of the orange solution for several weeks.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97 and N—H = 0.90 Å and $U_{iso}(H) = 1.2U_{eq}(C, N)$.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A view of the crystal packing along the c axis. Hydrogen bonds are shown as dashed lines.

Di- μ -sulfido-bis[(2-aminoethanethiolato- $\kappa^2 N$,S)oxidomolybdate(V)](Mo-Mo)

 $F_{000} = 856$

 $D_{\rm x} = 2.281 \text{ Mg m}^{-3}$ Mo Ka radiation

Cell parameters from 245 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.1 - 25.1^{\circ}$

 $\mu = 2.59 \text{ mm}^{-1}$

T = 293 (2) K

Prism, orange

 $0.30 \times 0.22 \times 0.18 \text{ mm}$

Crystal data

[Mo₂O₂S₂(C₂H₆NS)₂] $M_r = 440.28$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.2359 (9) Å b = 12.5935 (11) Å c = 10.2596 (9) Å β = 104.166 (2)° V = 1282.30 (19) Å³ Z = 4

Data collection

Siemens SMART CCD area-detector diffractometer	2268 independent reflections
Radiation source: fine-focus sealed tube	1753 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.073$
T = 293(2) K	$\theta_{\text{max}} = 25.1^{\circ}$
φ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 12$
$T_{\min} = 0.492, \ T_{\max} = 0.633$	$k = -14 \rightarrow 15$
6415 measured reflections	$l = -11 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H-atom parameters constrained
$wR(F^2) = 0.115$	$w = 1/[\sigma^2(F_o^2) + (0.0177P)^2 + 11.6194P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.18	$(\Delta/\sigma)_{\rm max} < 0.001$
2268 reflections	$\Delta \rho_{max} = 0.75 \text{ e} \text{ Å}^{-3}$
127 parameters	$\Delta \rho_{\rm min} = -0.77 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
x	v	Z	U_{iso}^*/U_{eq}
	9	-	= 150 × = cq

Mo1	0.24088 (8)	0.28563 (7)	0.23707 (8)	0.0308 (2)
Mo2	0.26812 (8)	0.50741 (7)	0.21672 (8)	0.0314 (2)
S1	0.0614 (2)	0.1740 (2)	0.1200 (3)	0.0390 (6)
S2	0.0689 (2)	0.4136 (2)	0.1873 (3)	0.0398 (6)
S3	0.3706 (3)	0.5979 (2)	0.0634 (3)	0.0428 (6)
S4	0.4155 (2)	0.3758 (2)	0.1811 (3)	0.0446 (7)
01	0.2747 (8)	0.2657 (6)	0.4035 (7)	0.057 (2)
02	0.3266 (8)	0.5483 (6)	0.3766 (7)	0.0517 (19)
N1	0.3497 (7)	0.1462 (6)	0.1863 (8)	0.0345 (18)
H1C	0.3588	0.1535	0.1017	0.041*
H1D	0.4329	0.1445	0.2416	0.041*
N2	0.1333 (8)	0.6454 (6)	0.1567 (8)	0.041 (2)
H2C	0.0776	0.6332	0.0755	0.050*
H2D	0.0826	0.6544	0.2162	0.050*
C1	0.1444 (9)	0.0480 (8)	0.1021 (10)	0.038 (2)
H1A	0.0911	-0.0105	0.1224	0.046*
H1B	0.1522	0.0400	0.0103	0.046*
C2	0.2825 (9)	0.0463 (8)	0.1971 (10)	0.042 (2)
H2A	0.2747	0.0362	0.2886	0.050*
H2B	0.3347	-0.0121	0.1743	0.050*
C3	0.2878 (11)	0.7277 (9)	0.0442 (10)	0.049 (3)
H3A	0.3548	0.7833	0.0516	0.059*
H3B	0.2262	0.7327	-0.0441	0.059*
C4	0.2115 (12)	0.7426 (8)	0.1509 (11)	0.048 (3)
H4A	0.2737	0.7553	0.2373	0.058*
H4B	0.1515	0.8031	0.1293	0.058*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.0347 (5)	0.0266 (5)	0.0306 (4)	0.0024 (4)	0.0070 (3)	0.0003 (4)
Mo2	0.0363 (4)	0.0267 (5)	0.0305 (4)	-0.0013 (4)	0.0068 (3)	-0.0026 (3)
S1	0.0306 (12)	0.0306 (14)	0.0560 (16)	-0.0003 (10)	0.0108 (11)	0.0003 (12)
S2	0.0340 (13)	0.0301 (14)	0.0586 (16)	0.0021 (11)	0.0176 (12)	0.0041 (12)
S3	0.0438 (14)	0.0433 (16)	0.0441 (15)	-0.0091 (12)	0.0159 (12)	-0.0018 (12)
S4	0.0309 (13)	0.0344 (16)	0.0696 (18)	-0.0044 (11)	0.0142 (12)	-0.0091 (13)
01	0.083 (5)	0.054 (5)	0.036 (4)	0.014 (4)	0.016 (4)	0.001 (4)
O2	0.076 (5)	0.040 (5)	0.037 (4)	0.000 (4)	0.008 (4)	-0.005 (3)
N1	0.029 (4)	0.025 (4)	0.047 (5)	0.004 (3)	0.005 (3)	-0.001 (4)
N2	0.050 (5)	0.034 (5)	0.043 (5)	0.004 (4)	0.017 (4)	0.001 (4)
C1	0.043 (6)	0.025 (5)	0.050 (6)	-0.001 (4)	0.015 (5)	-0.003 (5)
C2	0.041 (6)	0.036 (6)	0.046 (6)	-0.002 (5)	0.008 (5)	0.005 (5)
C3	0.054 (6)	0.046 (7)	0.050 (6)	-0.005 (5)	0.015 (5)	0.011 (5)
C4	0.073 (7)	0.018 (5)	0.050 (6)	0.000 (5)	0.007 (6)	0.002 (4)
	0					
Geometric paran	neters (Å, °)					
Mo1—O1		1.676 (7)	N1—H1	D	0.9000)
Mo1—N1		2.209 (7)	N2—C4		1.471	(12)

supplementary materials

Mo1—S4	2.306 (3)	N2—H2C	0.9000
Mo1—S2	2.349 (3)	N2—H2D	0.9000
Mo1—S1	2.391 (3)	C1—C2	1.508 (13)
Mo1—Mo2	2.8197 (12)	C1—H1A	0.9700
Mo2—O2	1.683 (7)	C1—H1B	0.9700
Mo2—N2	2.211 (8)	C2—H2A	0.9700
Mo2—S2	2.312 (3)	C2—H2B	0.9700
Mo2—S4	2.329 (3)	C3—C4	1.505 (14)
Mo2—S3	2.383 (3)	С3—НЗА	0.9700
S1—C1	1.829 (10)	С3—Н3В	0.9700
S3—C3	1.830 (11)	C4—H4A	0.9700
N1—C2	1.451 (12)	C4—H4B	0.9700
N1—H1C	0.9000		
O1—Mo1—N1	97.5 (3)	C2—N1—H1C	108.9
O1—Mo1—S4	110.4 (3)	Mo1—N1—H1C	108.9
N1—Mo1—S4	82.3 (2)	C2—N1—H1D	108.9
O1—Mo1—S2	106.4 (3)	Mo1—N1—H1D	108.9
N1—Mo1—S2	152.7 (2)	H1C—N1—H1D	107.7
S4—Mo1—S2	101.13 (10)	C4—N2—Mo2	110.9 (6)
O1—Mo1—S1	111.4 (3)	C4—N2—H2C	109.5
N1—Mo1—S1	77.5 (2)	Mo2—N2—H2C	109.5
S4—Mo1—S1	135.38 (10)	C4—N2—H2D	109.5
S2—Mo1—S1	81.46 (9)	Mo2—N2—H2D	109.5
O1—Mo1—Mo2	103.0 (3)	H2C—N2—H2D	108.1
N1—Mo1—Mo2	134.8 (2)	C2—C1—S1	109.5 (7)
S4—Mo1—Mo2	52.90 (7)	C2—C1—H1A	109.8
S2—Mo1—Mo2	52.17 (6)	S1—C1—H1A	109.8
S1—Mo1—Mo2	128.55 (7)	C2—C1—H1B	109.8
O2—Mo2—N2	94.6 (3)	S1—C1—H1B	109.8
O2—Mo2—S2	112.1 (3)	H1A—C1—H1B	108.2
N2—Mo2—S2	84.0 (2)	N1—C2—C1	109.0 (8)
O2—Mo2—S4	106.3 (3)	N1—C2—H2A	109.9
N2—Mo2—S4	154.1 (2)	С1—С2—Н2А	109.9
S2—Mo2—S4	101.55 (9)	N1—C2—H2B	109.9
O2—Mo2—S3	112.8 (3)	C1—C2—H2B	109.9
N2—Mo2—S3	77.6 (2)	H2A—C2—H2B	108.3
S2—Mo2—S3	132.44 (10)	C4—C3—S3	110.0 (7)
S4—Mo2—S3	80.21 (10)	С4—С3—НЗА	109.7
O2—Mo2—Mo1	104.4 (3)	S3—C3—H3A	109.7
N2—Mo2—Mo1	137.1 (2)	С4—С3—Н3В	109.7
S2—Mo2—Mo1	53.37 (7)	S3—C3—H3B	109.7
S4—Mo2—Mo1	52.15 (7)	НЗА—СЗ—НЗВ	108.2
S3—Mo2—Mo1	126.15 (8)	N2—C4—C3	108.1 (8)
C1—S1—Mo1	104.0 (3)	N2—C4—H4A	110.1
Mo2—S2—Mo1	74.46 (8)	С3—С4—Н4А	110.1
C3—S3—Mo2	103.4 (3)	N2—C4—H4B	110.1
Mo1—S4—Mo2	74.95 (8)	C3—C4—H4B	110.1
C2—N1—Mo1	113.3 (6)	H4A—C4—H4B	108.4

O1—Mo1—Mo2—O2	6.2 (4)	N1—Mo1—S2—Mo2	-116.2 (4)
N1—Mo1—Mo2—O2	-108.5 (4)	S4-Mo1-S2-Mo2	-21.39 (10)
S4—Mo1—Mo2—O2	-99.7 (3)	S1—Mo1—S2—Mo2	-156.15 (9)
S2—Mo1—Mo2—O2	107.0 (3)	O2—Mo2—S3—C3	-76.3 (5)
S1—Mo1—Mo2—O2	137.7 (3)	N2—Mo2—S3—C3	13.5 (4)
O1—Mo1—Mo2—N2	-107.2 (4)	S2—Mo2—S3—C3	83.3 (4)
N1—Mo1—Mo2—N2	138.1 (4)	S4—Mo2—S3—C3	-180.0 (4)
S4—Mo1—Mo2—N2	146.9 (3)	Mo1—Mo2—S3—C3	153.8 (4)
S2—Mo1—Mo2—N2	-6.5 (3)	O1—Mo1—S4—Mo2	-91.1 (3)
S1—Mo1—Mo2—N2	24.3 (3)	N1—Mo1—S4—Mo2	173.7 (2)
O1—Mo1—Mo2—S2	-100.8 (3)	S2—Mo1—S4—Mo2	21.17 (10)
N1—Mo1—Mo2—S2	144.5 (3)	S1—Mo1—S4—Mo2	110.25 (12)
S4—Mo1—Mo2—S2	153.34 (13)	O2—Mo2—S4—Mo1	95.8 (3)
S1—Mo1—Mo2—S2	30.75 (12)	N2—Mo2—S4—Mo1	-121.7 (5)
O1—Mo1—Mo2—S4	105.9 (3)	S2—Mo2—S4—Mo1	-21.56 (10)
N1—Mo1—Mo2—S4	-8.8 (3)	S3—Mo2—S4—Mo1	-153.14 (10)
S2—Mo1—Mo2—S4	-153.34 (13)	O1—Mo1—N1—C2	72.4 (7)
S1—Mo1—Mo2—S4	-122.59 (13)	S4—Mo1—N1—C2	-177.9 (6)
O1—Mo1—Mo2—S3	139.3 (3)	S2—Mo1—N1—C2	-78.5 (8)
N1—Mo1—Mo2—S3	24.6 (3)	S1—Mo1—N1—C2	-38.0 (6)
S4—Mo1—Mo2—S3	33.46 (12)	Mo2—Mo1—N1—C2	-170.9 (5)
S2—Mo1—Mo2—S3	-119.88 (12)	O2—Mo2—N2—C4	70.5 (7)
S1—Mo1—Mo2—S3	-89.13 (12)	S2—Mo2—N2—C4	-177.7 (6)
O1—Mo1—S1—C1	-83.6 (4)	S4—Mo2—N2—C4	-73.7 (9)
N1—Mo1—S1—C1	9.7 (4)	S3—Mo2—N2—C4	-41.9 (6)
S4—Mo1—S1—C1	74.9 (4)	Mo1—Mo2—N2—C4	-172.5 (5)
S2—Mo1—S1—C1	172.2 (3)	Mo1—S1—C1—C2	15.9 (7)
Mo2—Mo1—S1—C1	148.0 (3)	Mo1—N1—C2—C1	59.9 (9)
O2—Mo2—S2—Mo1	-91.9 (3)	S1—C1—C2—N1	-46.7 (9)
N2—Mo2—S2—Mo1	175.6 (2)	Mo2—S3—C3—C4	13.0 (8)
S4—Mo2—S2—Mo1	21.20 (10)	Mo2—N2—C4—C3	62.8 (9)
S3—Mo2—S2—Mo1	108.43 (12)	S3—C3—C4—N2	-46.8 (11)
O1—Mo1—S2—Mo2	93.9 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
N1—H1C···O1 ⁱ	0.90	2.25	3.025 (11)	144
N1—H1D····S3 ⁱⁱ	0.90	2.53	3.400 (8)	161
N2—H2C···S2 ⁱⁱⁱ	0.90	2.81	3.704 (9)	173
N2—H2D····S1 ^{iv}	0.90	2.50	3.403 (8)	178
Symmetry codes: (i) $r_{-\nu+1/2} = \frac{1}{2} (ii) - r + 1 \frac{1}{2} - \frac{1}{2} (ii) - r + 1 \frac{1}{2} = \frac{1}{2} (ii) - r + 1 \frac{1}{2} + \frac{1}{2} (ii) - r + 1 \frac{1}{2} = \frac{1}{2} (ii) - \frac{1}{2} (ii) - \frac{1}{2} = \frac{1}{2} (ii) - \frac{1}{2} (ii) - \frac{1}{2} = \frac{1}{2} (ii) - \frac{1}{$	$2 - \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} - \frac{1}{2} \cdot $	$v+1 - \tau$ (iv) $-r v+1$	$\frac{1}{2} -\frac{1}{2}$	

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) -x+1, y-1/2, -z+1/2; (iii) -x, -y+1, -z; (iv) -x, y+1/2, -z+1/2.

Fig. 2

